Development of a Smart Sensor Array for Adulteration Detection in Black Pepper Seeds using Machine Learning

نویسندگان

چکیده

Black pepper is an expensive commodity with a high risk of adulteration. Ground papaya seed the main adulterant in because it cannot be discriminated visually. There are few destructive methods. Since costlier, non-destructive method adulteration must but challenging one. The existing uses costlier equipment, bulky, involve laboratory-based testing, time consuming process. To overcome above issues, this article presents development Non-destructive E- nose gas sensor for detection. This system determines VOC controlled environment. proposed utilizes MQ2 and MQ3 arrays to identify Volatile Organic Compounds present seeds discriminate non-adulterant sample. data utilized perform qualitative analysis determine using support vector machine learning algorithm. Support Vector Machine algorithm outperforms comparison methods 100% classification accuracy. Conclusion: developed connected internet via IoT application model show results on web pages enables access by authenticated user from anywhere. Client server MQTT protocol used developing application.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

development and implementation of an optimized control strategy for induction machine in an electric vehicle

in the area of automotive engineering there is a tendency to more electrification of power train. in this work control of an induction machine for the application of electric vehicle is investigated. through the changing operating point of the machine, adapting the rotor magnetization current seems to be useful to increase the machines efficiency. in the literature there are many approaches wh...

15 صفحه اول

Detection of Fuel Adulteration in Real Time Using Optical Fiber Sensor and Peripheral Interface Controller

Detection of fuel adulteration in real time is the most important need of the world as it generates the hazardous effects on the environment, living and nonliving things. Various automotive users and fuel providers may mix kerosene in petrol and diesel. Adulterated fuel increases air pollution, as well as reduces the performance of vehicle engines. Such a malpractice in fuel is prevailing becau...

متن کامل

A Hybrid Machine Learning Method for Intrusion Detection

Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...

متن کامل

Qualitative detection of oil adulteration with machine learning approaches

The study focused on the machine learning analysis approaches to identify the adulteration of 9 kinds of edible oil qualitatively and answered the following three questions: Is the oil sample adulterant? How does it constitute? What is the main ingredient of the adulteration oil? After extracting the highperformance liquid chromatography (HPLC) data on triglyceride from 370 oil samples, we appl...

متن کامل

metrics for the detection of changed buildings in 3d old vector maps using als data (case study: isfahan city)

هدف از این تحقیق، ارزیابی و بهبود متریک های موجود جهت تایید صحت نقشه های قدیمی سه بعدی برداری با استفاده از ابر نقطه حاصل از لیزر اسکن جدید شهر اصفهان می باشد . بنابراین ابر نقطه حاصل از لیزر اسکنر با چگالی حدودا سه نقطه در هر متر مربع جهت شناسایی عوارض تغییر کرده در نقشه های قدیمی سه بعدی استفاده شده است. تمرکز ما در این تحقیق بر روی ساختمان به عنوان یکی از اصلی ترین عارضه های شهری می باشد. من...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Advanced Computer Science and Applications

سال: 2023

ISSN: ['2158-107X', '2156-5570']

DOI: https://doi.org/10.14569/ijacsa.2023.0140375